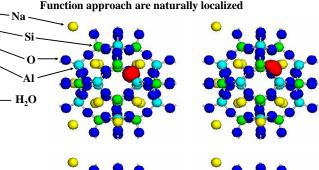
Computational Approaches to the Chemistry of Nanopores

Normand A. Modine, Michael Chandross, and Eugenio Jaramillo

Namodin@sandia.gov

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL8500.

The Problem

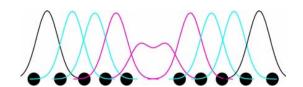

Modeling local chemistry in the presence of collective phenomena is a critical step toward scientific understanding of complex nanoporous materials

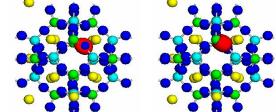
Zeolite-4A collective phenomena involve 672+ atoms.


These length and time scales demand classical treatment. Two methods of solving for GWF have been implemented

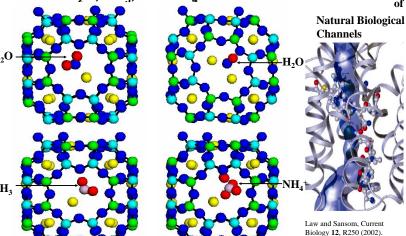
- · Green's Function Approach
- Grassmann Conjugate Gradient Approach

The Generalized Wannier Functions from the Green's Function approach are naturally localized


Zeolite-4A chemical specificity involves a few atoms, but requires the accuracy and flexibility of *ab initio* quantum methods.



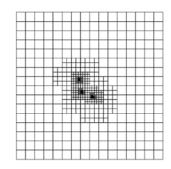
IDEA: Embed Density Functional Theory in a Classical Background


Efficient embedding: A localized view of electronic structure based on "Generalized Wannier Functions"

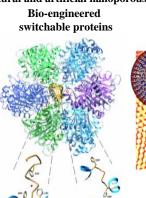
- Linearly independent localized functions that span occupied subspace of the Kohn-Sham Hamiltonian
- The density matrix and total energy are easily evaluated
- Optimize red, approximate blue, and ignore black

Results: H₂O, NH₃, and NH₄+ in Zeolite-4A

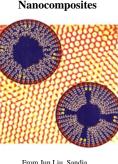
Funding


Sandia Laboratory Directed Research and Development

New Proposal to DOE joint BES/ASCR Computational Nanoscience Call: Investigating the Chemistry of Nanopores Using a Localized Hierarchical Basis


Our Team: Normand Modine, Pavel Bochev, Mark Sears, Richard Lehoucq, Susan Rempe, Kevin Leung, Michael Chandross, Tomas Arias (Cornell), Chris Anderson (UCLA)

The Idea: Work with the mathematicians to address efficiently the range of scales involved in the chemistry of nanopores


A Hierarchical Basis is key to an efficient treatment of inhomogeneous length scales

Study remarkable selectivity and switching of natural and artificial nanoporous systems

Functionalized Nanocomposites

1 Tom Jun Liu, Sand

Liu et al., Nature Maters. 1, 173 (2002).